4.4 Article

The Amphotericin B-Ergosterol Complex Spans a Lipid Bilayer as a Single-Length Assembly

Journal

BIOCHEMISTRY
Volume 58, Issue 51, Pages 5188-5196

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.9b00835

Keywords

-

Funding

  1. KAKENHI [16H06315]
  2. Innovative Areas Frontier Research on Chemical Communications [17H06406]
  3. JST, ERATO Lipid Active Structure Project [JPMJER1005]

Ask authors/readers for more resources

Amphotericin B (AmB) is a polyene macrolide antibiotic clinically used as an antifungal drug. Its preferential complexation with ergosterol (Erg), the major sterol of fungal membranes, leads to the formation of a barrel-stave-like ion channel across a lipid bilayer. To gain a better understanding of the mechanism of action, the mode of lipid bilayer spanning provides essential information. However, because of the lack of methodologies to observe it directly, it has not been revealed for the Erg-containing channel assembly for many years. In this study, we disclosed that the AmB Erg complex spans a lipid bilayer with a single-molecule length, using solid-state nuclear magnetic resonance (NMR) experiments. Paramagnetic relaxation enhancement by Mn2+ residing near the surface of lipid bilayers induced the depth-dependent decay of C-13 NMR signals for individual carbon atoms of AmB. We found that both terminal segments, the 41-COOH group and C38-C40 methyl groups, come close to the lipid bilayer surfaces, suggesting that the AmB-Erg complex spans a palmitoyloleoylphosphatidylcholine (POPC) bilayer with a single-molecule length. Molecular dynamics simulation experiments further confirmed the stabilization of the AmB-Erg complex as a single-length spanning complex. These results provide experimental evidence of the single-length complex incorporated in the membrane by making thinner a POPC Erg bilayer that mimics fungal membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available