4.6 Article

ALS2, the small GTPase Rab17-interacting protein, regulates maturation and sorting of Rab17-associated endosomes

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.12.122

Keywords

Rab17; ALS2; RABGEF1; Endosome; Clathrin-independent endocytosis (CIE)

Funding

  1. Japanese Society for Promotion of Science (JSPS) [26290018, 19H03551]
  2. National Natural Science Foundation of China
  3. JSPS Bilateral Joint Research Project

Ask authors/readers for more resources

Small GTPase Rab17 has been shown to regulate a wide range of physiological processes including cell migration in tumor cells and dendrite morphogenesis in neurons. However, molecular mechanism underlying Rab17-mediated intracellular trafficking is still unclear. To address this issue, we focused on Rab17-interacting protein ALS2, which was also known as a guanine nucleotide exchange factor (GEF) for Rab5, and investigated how ALS2 contributed to Rab17-associated membrane trafficking in cells. Rab17 was primarily localized to endosomal compartments, particularly to recycling endosomes, which was dependent on Rab11 expression. Upon Rac1 activation, Rab17 along with ALS2 was recruited to membrane ruffles and early endosomes in a Rab5 activity-independent manner. While RABGEF1, another Rab17-interacting Rab5 GEF, functioned as a GEF for Rab17, ALS2 did not possess such catalytic activity but merely interacted with Rab17. Importantly, ALS2 acted downstream of RABGEF1, regulating the maturation of Rab17-residing nascent endosomes to early endosome antigen 1 (EEA1)-positive early endosomes. Further, these Rab17-residing nascent endosomes were arisen via clathrin-independent endocytosis (CIE). Collectively, ALS2 plays a crucial role in the regulation of Rab17-associated endosomal trafficking and maturation, probably through their physical interaction, in cells. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available