4.6 Article

The circadian clock protects against ferroptosis-induced sterile inflammation

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2020.02.142

Keywords

Ferroptosis; Circadian clock; Pancreatitis; DAMP; Inflammation

Funding

  1. American Cancer Society [RSG-16-014-01-CDD]
  2. National Natural Science Foundation of China [31671435, 81400132, 81772508]

Ask authors/readers for more resources

The circadian clock, a biochemical oscillator, plays a fundamental role in health and diseases. Ferroptosis, a type of regulated cell death driven by oxidative stress, is a prominent feature in iron-induced tissue injury. However, whether an impaired circadian clock contributes to ferroptosis-induced sterile inflammation remains unknown. Here, we show that the circadian transcription factor ARNTL (also known as BMAL1) protects against experimental acute pancreatitis through blocking the ferroptosis-mediated release of HMGB1, a mediator of sterile inflammation. We utilized a Cre/LoxP system to generate mice with a specific depletion of Arntl in the pancreas (Pdx1-Cre;Arntl(flox/flox)). These Arntl-deficient mice developed t-arginine-induced acute pancreatitis more rapidly than controls, with increased mortality, tissue injury, neutrophil infiltration, and HMGB1 release. In contrast, the administration of liproxstatin-1 (a ferroptosis inhibitor) or anti-HMGB1 neutralizing antibody attenuated the development of acute pancreatitis in the Arntl-deficient mice. Mechanistically, pancreatic ARNTL is a key regulator of the expression of multiple antioxidant or membrane repair systems (e.g., SLC7A11, GPX4, SOD1, TXN, NFE2L2, and CHMP5) to suppress ferroptotic tissue injury. Collectively, these findings uncover a novel link between the circadian clock and ferroptotic response in inflammation and pancreatic injury. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available