4.0 Article

Novel pharmacological modulation of dystonic phenotypes caused by a gain-of-function mutation in the Na+leak-current channel

Journal

BEHAVIOURAL PHARMACOLOGY
Volume 31, Issue 5, Pages 465-476

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/FBP.0000000000000526

Keywords

2-aminoethoxydiphenyl borate; dyskinesia; dystonia; flunarizine; Na(+)leak-current channel; nimodipine; sodium leak current channel

Funding

  1. Department of Psychiatry
  2. NIH Office of Research Infrastructure Programs [P40 OD010440]

Ask authors/readers for more resources

The Na(+)leak-current channel (NALCN) regulates the resting membrane potential in excitable cells, thus determining the likelihood of depolarization in response to incoming signals. Gain-of-function (gf) mutations in this channel are associated with severe dystonic movement disorders in man. Currently, there are no known pharmacological antagonists or selective modulators of this important channel. A gain-of-function mutation in NALCN ofC. elegans[known asunc-77(e625)] causes uncoordinated, hyperactive locomotion. We hypothesized that this hyperactive phenotype can be rescued with pharmacological modulators. Here, we summarize the results of targeted drug screening aimed at identification of drugs that corrected locomotion deficits inunc-77(e625) animals. To assay hyperactive locomotion, animals were acutely removed from food and characteristic foraging movements were quantified. Drug screening revealed that 2-aminoethoxydiphenyl borate (2-ABP), nifedipine, nimodipine, flunarizine and ethoxzolamide significantly decreased abnormal movements inunc-77(e625) animals. 2-APB also corrected egg release and coiling deficits in this strain. In addition, serotonin and dopamine both reduced hyperactive locomotion, consistent with regulatory interactions between these systems and the NALCN. 2-APB induced movement phenotypes in wild-type animals that faithfully mimicked those observed in NALCN knockout strains, which suggested that this drug may directly block the channel. Moreover, 2-APB and flunarizine showed significant structural similarities suggestive of overlap in their mode of action. Together, these studies have revealed new insights into regulation of NALCN function and led to the discovery of a potential pharmacological antagonist of the NALCN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available