4.6 Article

Modeling the orbital motion of Sgr A*'s near-infrared flares

Journal

ASTRONOMY & ASTROPHYSICS
Volume 635, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201937233

Keywords

black hole physics; Galaxy: center; accretion; accretion disks

Ask authors/readers for more resources

Infrared observations of Sgr A* probe the region close to the event horizon of the black hole at the Galactic center. These observations can constrain the properties of low-luminosity accretion as well as that of the black hole itself. The GRAVITY instrument at the ESO VLTI has recently detected continuous circular relativistic motion during infrared flares which has been interpreted as orbital motion near the event horizon. Here we analyze the astrometric data from these flares, taking into account the effects of out-of-plane motion and orbital shear of material near the event horizon of the black hole. We have developed a new code to predict astrometric motion and flux variability from compact emission regions following particle orbits. Our code combines semi-analytic calculations of timelike geodesics that allow for out-of-plane or elliptical motions with ray tracing of photon trajectories to compute time-dependent images and light curves. We apply our code to the three flares observed with GRAVITY in 2018. We show that all flares are consistent with a hotspot orbiting at R similar to 9 gravitational radii with an inclination of i similar to 140 degrees. The emitting region must be compact and less than similar to 5 gravitational radii in diameter. We place a further limit on the out-of-plane motion during the flare.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available