4.7 Article

Microstructural analysis and blowing agent concentration in aged polyurethane and polyisocyanurate foams

Journal

APPLIED THERMAL ENGINEERING
Volume 164, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2019.114440

Keywords

Foam insulation; Polyurethane foams; Polyisocyanurates; Blowing agent; Scanning electron microscopy; Gas chromatography

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [DG 2016-04904]
  2. Ontario Ministry of Research Innovation and Science (MRIS
  3. Ontario Center for Excellence

Ask authors/readers for more resources

Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials. Understanding how these new blowing agents influence the characteristics of the foams is critical in thermal engineering applications. The cell structure of a foam and the concentration of the blowing agents in it are the main factors affecting the thermal conductivity of foams. Recent studies have revealed the risks of condensation of some of the new environmentally friendly blowing agents at temperatures below 10 degrees C. Meanwhile, many blowing agents tend more easily to escape the foam structure when subject to temperature cycles; this aging increases the thermal conductivity of too, since the blowing gas is replaced by air. In this paper, to understand the loss of thermal performance of aged foams, a microstructure and chemical characterization was performed together with thermal conductivity tests of both pristine and laboratory-aged foams. The aging behaviour was analysed by SEM imaging and by measuring the blowing agent concentration in both open cell and closed cell foams. Changes in the polymer physical attributes were identified. Results prove that aged foams show cellular elongation and increase in the cell wall thickness. The results of gas chromatography helped to quantify the changes in the concentration of pentane in aged polyisocyanurate foams. A decrease of the blowing agent between 11% and 85% for the aged polyisocyanurates was measured. Finally, this study highlights the importance to analyse the in-service characteristics of both polyurethane and polyisocyanurate foams to avoid considering their thermal conductivity as a constant property.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available