4.7 Article

Two-step synthesis of well-ordered layered graphite oxide with high oxidation degree

Journal

APPLIED SURFACE SCIENCE
Volume 507, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2019.145049

Keywords

Graphite; Graphite oxide; Electrochemical oxidation; Overoxidation; Modified Hummers method

Funding

  1. National Science Centre, Poland [2017/25/B/ST8/01634]

Ask authors/readers for more resources

Chemical oxidation of graphite by strong oxidant in strong acid medium produces graphite oxide (GO) with a plausible oxidation degree, however the precursor is susceptible to exfoliation and structural deformations. In this work, we present a two-step preparation method of highly oxidized GO flakes with well-ordered layered structure. Firstly, graphite was electrooxidized in HClO4 electrolyte yielding electrochemically gathered graphite oxide (EGO). Next, EGO was chemically overoxidized by modified Hummers method to prepare overoxidized electrochemically gathered graphite oxide (OEGO). Due to the increased interlayer distances of EGO, MnO3+ ions are able to penetrate the interlayer spaces and oxidize the unreacted graphitic domains. Hence, the synthesized OEGO is characterized by minor structure deformation and high oxidation degree. In case of our investigations most of well-ordered layered domains have been preserved, in contrast to the GO obtained directly from graphite. It is also noted that the overoxidation of EGO mainly results in formation of hydroxyl and epoxy groups. Additionally, rinsing OEGO with acetone helps prevent the tearing of oxidized graphene layers by O-2 evolution arising from the reaction of H2O2 with MnO2 precipitated on the surface of water-washed samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available