4.7 Article

An improved random forest-based rule extraction method for breast cancer diagnosis

Journal

APPLIED SOFT COMPUTING
Volume 86, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2019.105941

Keywords

Breast cancer diagnosis; Rule extraction; Random forest; Interpretability; MOEAs

Funding

  1. National Natural Science Foundation of China [71533001, 71501024, 71871148, 71532007, 71432003]
  2. China Postdoctoral Science Foundation [2018T110631, 2017M612099]
  3. Sichuan University [2018hhs-47]

Ask authors/readers for more resources

Breast cancer has been becoming the main cause of death in women all around the world. An accurate and interpretable method is necessary for diagnosing patients with breast cancer for well-performed treatment. Nowadays, a great many of ensemble methods have been widely applied to breast cancer diagnosis, capable of achieving high accuracy, such as Random Forest. However, they are black-box methods which are unable to explain the reasons behind the diagnosis. To surmount this limitation, a rule extraction method named improved Random Forest (RF)-based rule extraction (IRFRE) method is developed to derive accurate and interpretable classification rules from a decision tree ensemble for breast cancer diagnosis. Firstly, numbers of decision tree models are constructed using Random Forest to generate abundant decision rules available. And then a rule extraction approach is devised to detach decision rules from the trained trees. Finally, an improved multi-objective evolutionary algorithm (MOEA) is employed to seek for an optimal rule predictor where the constituent rule set is the best trade-off between accuracy and interpretability. The developed method is evaluated on three breast cancer data sets, i.e., the Wisconsin Diagnostic Breast Cancer (WDBC) dataset, Wisconsin Original Breast Cancer (WOBC) dataset, and Surveillance, Epidemiology and End Results (SEER) breast cancer dataset. The experimental results demonstrate that the developed method can primely explain the black-box methods and outperform several popular single algorithms, ensemble learning methods, and rule extraction methods from the view of accuracy and interpretability. What is more, the proposed method can be popularized to other cancer diagnoses in practice, which provides an option to a more interpretable, more accurate cancer diagnosis process. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available