4.6 Article

Synthesis and characterization of silica-coated magnetite nanoparticles modified with bis(pyrazolyl) triazine ruthenium(II) complex and the application of these nanoparticles as a highly efficient catalyst for the hydrogen transfer reduction of ketones

Journal

APPLIED ORGANOMETALLIC CHEMISTRY
Volume 34, Issue 2, Pages -

Publisher

WILEY
DOI: 10.1002/aoc.5366

Keywords

heterogeneous catalyst; hydrogen transfer reactions; magnetic nanoparticles; reductionruthenium complex

Ask authors/readers for more resources

We present a facile and efficient method for modifying the surface of silica-coated Fe3O4 magnetic nanoparticles (MNPs) with bis(pyrazolyl) triazine ruthenium(II) complex [MNPs@BPT-Ru (II)]. Field emission-scanning electron microscopy, thermogravimetric/derivative thermogravimetry analysis, X-ray powder diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectrometry analyses were employed for characterizing the structure of these nanoparticles. MNPs@BPT-Ru(II) nanoparticles proved to be a magnetic, reusable, and heterogeneous catalyst for the hydrogen transfer reduction of ketone derivatives. In addition, highly pure products were obtained with excellent yields in relatively short times in the presence of this catalyst. A comparison of this catalyst with those previously used for the hydrogen transfer reactions proved the uniqueness of MNPs@BPT-Ru(II) nanoparticle which is due to its inherent magnetic properties and large surface area. The presented method also had other advantages such as simple reaction conditions, eco-friendliness, high recovery ability, easy work-up, and low cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available