4.7 Article

A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 104, Issue 5, Pages 2079-2096

Publisher

SPRINGER
DOI: 10.1007/s00253-020-10388-3

Keywords

Carbohydrate-binding module family 3; Endo-; exotype enzyme; Glycoside hydrolase family 9; Multifunctional enzyme; Oligosaccharide; Paenibacillus curdlanolyticus

Funding

  1. Office of the Higher Education Commission [214/2551]
  2. KMUTT 55th Anniversary Commemorative Fund
  3. Japan International Research Center for Agricultural Sciences

Ask authors/readers for more resources

PcMulGH9, a novel glycoside hydrolase family 9 (GH9) from Paenibacillus curdlanolyticus B-6, was successfully expressed in Escherichia coli. It is composed of a catalytic domain of GH9, two domains of carbohydrate-binding module family 3 (CBM3) and two domains of fibronectin type 3 (Fn3). The PcMulGH9 enzyme showed broad activity towards the beta-1,4 glycosidic linkages of cellulose, mannan and xylan, including cellulose and xylan contained in lignocellulosic biomass, which is rarely found in GH9. The enzyme hydrolysed substrates with bifunctional endo-/exotypes cellulase, mannanase and xylanase activities, but predominantly exhibited exo-activities. This enzyme released cellobiose as a major product from cellohexaose, while mannotriose and xylotriose were major hydrolysis products from mannohexaose and xylohexaose, respectively. Moreover, PcMulGH9 could hydrolyse untreated corn hull and rice straw into xylo- and cello-oligosaccharides. Enzyme kinetics, site-directed mutagenesis and molecular docking revealed that Met394, located at the binding subsite + 2, was involved in broad substrate specificity of PcMulGH9 enzyme. This study offers new knowledge of the multifunctional cellulase/mannanase/xylanase in GH9. The PcMulGH9 enzyme showed a novel function of GH9, which increases its potential for saccharification of lignocellulosic biomass into value-added products, especially oligosaccharides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available