4.8 Review

Electromagnetic energy harvesting using magnetic levitation architectures: A review

Journal

APPLIED ENERGY
Volume 260, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.114191

Keywords

Energy harvesting; Self-powering; Electromagnetic harvesting; Magnetic levitation; Modelling; Design optimization

Funding

  1. Portuguese Foundation for Science and Technology [SFRH/BPD/117475/2016, BI/UI66/8372/2018, POCI-01-0145-FEDER-031132]
  2. Centre for Mechanical Technology Automation [UID/EMS/00481/2019-FCT, CENTRO-01-0145-FEDER-022083]
  3. FCT/MCTES [UID/CTM/50011/2019]
  4. Ministry of Education and Science of the Russian Federation [K2-2019-015]
  5. [POCI-01-0247-FEDER-007678]
  6. Fundação para a Ciência e a Tecnologia [SFRH/BPD/117475/2016] Funding Source: FCT

Ask authors/readers for more resources

Motion-driven electromagnetic energy harvesters have the ability to provide low-cost and customizable electric powering. They are a well-suited technological solution to autonomously supply a broad range of high-sophisticated devices. This paper presents a detailed review focused on major breakthroughs in the scope of electromagnetic energy harvesting using magnetic levitation architectures. A rigorous analysis of twenty-one design configurations was made to compare their geometric and constructive parameters, optimization methodologies and energy harvesting performances. This review also explores the most relevant models (analytical, semi-analytical, empirical and finite element method) already developed to make intelligible the physical phenomena of their transduction mechanisms. The most relevant approaches to model each physical phenomenon of these transduction mechanisms are highlighted in this paper. Very good agreements were found between experimental and simulation tests with deviations lower than 15%. Moreover, the external motion excitations and electric energy harvesting outputs were also comprehensively compared and critically discussed. Electric power densities up to 8 mW/cm(3) (8 kW/m(3)) have already been achieved; for resistive loads, the maximum voltage and current were 43.4 V and 150 mA, respectively, for volumes up to 235 cm(3). Results highlight the potential of these harvesters to convert mechanical energy into electric energy both for large-scale and small-scale applications. Moreover, this paper proposes future research directions towards efficiency maximization and minimization of energy production costs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available