4.8 Article

An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids

Journal

APPLIED ENERGY
Volume 261, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113859

Keywords

Energy Management System; Robust Optimization; Combined Heat and Power; Multi Energy System; Uncertain Scheduling Optimization; Off-grid Microgrid

Funding

  1. Regione EmiliaRomagna

Ask authors/readers for more resources

Multi-energy systems and microgrids can play an important role in increasing the efficiency of distributed energy systems and favoring an increasing penetration from renewable sources, by serving as control hubs for the optimal management of Distributed Energy Resources. Predictive operation planning via Mixed Integer Linear Programming is an effective way of tackling the optimal management of these systems. However, the uncertainty of demand and renewable production forecasts can hinder the optimality of the scheduling solution and even lead to outages. This paper proposes a new Affinely Adjustable Robust Formulation of the day-ahead scheduling problem for a generic multi-energy system/microgrid subject to multiple uncertainty factors. Piece-wise linear decision rules are considered in the robust formulation, and their potential use for real-time control is assessed. Novel features include an ad hoc characterization of the polyhedral uncertainty space aimed at reducing solution conservativeness, aggregation of uncertain factors and partial-past recourse which allows speeding up the computational time. The advantages and limitations of the Affinely Adjustable Robust Formulation are thoroughly discussed and quantified through artificial and real-world test cases. The comparison with a conventional deterministic approach shows that, despite the limitations of the affine decision rules, the adjustable robust formulation can ensure full system reliability while attaining at the same time better performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available