4.8 Article

Particle modelling in biomass combustion using orthogonal collocation

Journal

APPLIED ENERGY
Volume 255, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113868

Keywords

Biomass combustion; Biomass pyrolysis; Particle model; Orthogonal collocation; Stefan flow

Funding

  1. Swedish Research Council [3482014-3522]

Ask authors/readers for more resources

Development of an accurate and computational efficient biomass particle model to predict particle pyrolysis and combustion is the focus of this paper. Partial differential equations (PDEs) for heat and mass balance are transformed into a system of coupled ordinary differential equations (ODEs) with the use of orthogonal collocation as the particle discretization method. The orthogonal collocation method is incorporated with comprehensive physicochemical mechanisms to predict the behavior of biomass components during particle pyrolysis and combustion. Heat adsorption by evaporated gas and water movement by diffusion inside the biomass matrix are included in the present work, in parallel with the effect of Stefan flow on the heat and mass transfer rates at the particle surface. Abandoning the classical interface-based modelling approach, the present approach allows decoupling between biomass components and spatial resolution, and the prediction of continuous intra-particle profiles. The new particle model is proven to be accurate and stable through its high degree of agreement with simulation results for particle pyrolysis and combustion experiments using different particle moisture contents and geometrical shapes. The intra-particle temperature gradient, as well as particle mass and size evolution, can be predicted accurately, as validated against experimental data. It is shown that six collocation points provide satisfying resolution. The computational efficiency is confirmed by the short simulation time that was found to be approximately three orders of magnitude faster than mesh-based simulations. This implies that the current model can be used for computational fluid dynamic (CFD) analysis through implementation as sub-grid-scale models to design, for example, biomass furnaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available