4.7 Article

Stabilization of silty sand using bentonite-magnesium-alkalinization: Mechanical, physicochemical and microstructural characterization

Journal

APPLIED CLAY SCIENCE
Volume 183, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.clay.2019.105325

Keywords

Calcium bentonite; Magnesium chloride; Chemical stabilization; Silty sand; Heat curing; XRD

Funding

  1. Ministry of Higher Education, Malaysia
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) / Discovery Grants Program [62R09724]
  3. NSERC/ENGAGE Grants Program [62R72677]

Ask authors/readers for more resources

This paper investigates the mechanical, physicochemical, and microstructural characterization of treated silty sand using a novel additive. The additive from a mixture of bentonite, magnesium chloride, and alkaline solution was introduced for stabilization of soil. Atterberg limits, compaction, pH, and unconfined compressive strength (UCS) tests were used to assess the mechanical and physicochemical properties of the stabilized soil. Further investigation results on the optimum designed sample are discussed based on microstructural analysis using X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). Two curing types: unheated and heated at 60 degrees C for 24 h, were observed at 7, 14, 28 and 60 days in ambient temperature. Overall, it was found that the chemical additive improved the compressive strength of the soil and the heated curing tests showed significant strength improvement. The mechanical and physicochemical results revealed an optimum mix to improve silty sand strength using the addition of 40% bentonite with an alkaline activator (SS/SH) ratio of 0.5, an alkaline activator-to-MgCl2 (L/S) ratio of 0.7, and 3% MgCl2 by dry weight of the soil under heat curing condition at 60 degrees C for 24 h. The microstructure analysis confirmed the formation of the cementitious products, such as calcium aluminium silicate hydrate (C-(A)-S-H) and magnesium silicate hydrate (M-S-H) in the treated sample.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available