4.8 Article

Solar-driven efficient degradation of emerging contaminants by g-C3N4-shielding polyester fiber/TiO2 composites

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 258, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2019.117960

Keywords

g-C3N4-shielding PET; TiO2; Photocatalytic degradation; Emerging contaminants; Solar irradiation

Funding

  1. National Natural Science Foundation of China [51133006, 51103133]
  2. Zhejiang Provincial Natural Science Foundation of China [LY14E030013]
  3. Public Welfare Technology Application Research Project of Zhejiang Province [LGF18E030001]

Ask authors/readers for more resources

Solar-driven photocatalysis has shown tremendous potential for environmental remediation, but photocatalysts with the strong oxidation ability usually destroy some organic carriers. Herein, we constructed a graphitic carbon nitride (g-C3N4)-shielding polyester fiber (PET)/titanium dioxide (TiO2) composite (g-C3N4-TiO2@LMPET) by using g-C3N4 as an isolation layer to protect the PET from the oxidation damage by hydroxyl radicals ((OH)-O-center dot). The results of photoluminescence and photocurrent indicated that the g-C3N4-TiO2@LMPET has lower photogenerated charge recombination rate. Meanwhile, g-C3N4 broadens the absorption range of the composite to visible region. Therefore, the g-C3N4-TiO2@LMPET composite exhibited a significantly enhanced photo catalytic performance toward the degradation of sulfaquinoxaline (SQX) and thiamethoxam under solar irradiation. Moreover, the g-C3N4-TiO2@LMPET exhibited good repeatability in cyclic experiments. Finally, the possible degradation pathways and mechanisms of SQX and thiamethoxam were proposed. Overall, our work provides a feasible method for constructing efficient and stable photocatalytic materials to eliminating emerging contaminants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available