4.4 Article

Drug Delivery of Amphotericin B through Core-Shell Composite Based on PLGA/Ag/Fe3O4: In Vitro Test

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 191, Issue 2, Pages 496-510

Publisher

SPRINGER
DOI: 10.1007/s12010-019-03181-0

Keywords

Drug delivery; Amphotericin B; Magnetic nanoparticles; Core-shell; Emulsion solvent evaporation

Ask authors/readers for more resources

This research aimed at developing and designing a slow and targeted delivery of Amphotericin B (AmB) antibiotic by placing three types of shells containing different ratios of biodegradable and biocompatible polymers poly (D, L-lactide)-co-(glycolide) (PLGA), polyethylene glycol (PEG), and polyvinyl pyrrolidone (PVP) on core-shell structures including silver nanoparticles that were activated with magnetic nanoparticles (MNPs). Emulsion solvent evaporation technique was employed to synthesize three types of shells: (i) (PVP-PEG) (100:20, w/w), (ii) (PLGA-PEG) (100:20, w/w), and (iii) (PLGA-PEG) (50:10, w/w) introduced as D1, D2, and D3 respectively. The in vitro release of AmB was examined in aqueous medium phosphate buffer saline (PBS) in pH similar to 7.2. Several spectroscopy methods characterized the structure and properties of the nanoparticles. In vitro antifungal activity of pure AmB and D1, D2, and D3 was studied against Candida albicans (C. albicans). The results explained that frequency of drug released from D2 at the first 10 h was (18%) that was compared with D1 (30%) and D3 (24%) at the same time. D2 had more efficient and longer targeted controlled release. The findings showed that D2 can be used as an effective carrier for in vitro targeted controlled release and D2 and D3 had powerful activity against C. albicans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available