4.5 Article

Clinical and molecular characteristics of Klebsiella pneumoniae ventilator-associated pneumonia in mainland China

Journal

BMC INFECTIOUS DISEASES
Volume 16, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12879-016-1942-z

Keywords

Klebsiella pneumoniae; Ventilator-associated pneumonia; Hypermucoviscosity; Virulence determinant

Funding

  1. Henan Province Medical Science and Technique Foundation [201203094]
  2. Joint Funds of National Natural Science Foundation of China [U1304804]

Ask authors/readers for more resources

Background: Klebsiella pneumoniae is a prominent nosocomial pathogen that accounts for up to 10 % of all hospital-acquired infections. It is a frequent cause of ventilator-associated pneumonia (VAP). The purpose of this study was to investigate the clinical characteristics of K. pneumoniae-associated VAP and the molecular characteristics of K. pneumoniae strains. Methods: We retrospectively reviewed 70 mechanically ventilated patients with K. pneumoniae isolated. All K. pneumoniae strains were examined to determine hypermucoviscosity (HV) phenotype, capsular serotypes, virulence genes, multilocus sequence typing and antimicrobial susceptibility. Results: Hypermucoviscosity was found in 14 of 70 (20 %) isolates of K. pneumoniae. Among the 70 patients, 43 cases (61.4 %) developed VAP. Furthermore, VAP was more frequently induced by HV-positive K. pneumoniae (14/14, 100 %) than by HV-negative strains (29/56, 51.7 %). HV-positive K. pneumoniae-associated VAP patients were more inclined to develop bacteremia and had a higher mortality rate than HV-negative strains VAP patients. Antibiotic resistance was more frequent in HV-negative strains-than in HV-positive strains-infected patients. The prevalence of rmpA and aerobactin genes were 85.7 % and 85.7 % respectively, and serotypes K1 and K2 accounted for 14.3 % and 28.6 % of the hypermucoviscosity strains, respectively. Strains carrying rmpA and aerobactin genes were significantly associated with HV-phenotype, and rmpA and aerobactin coexisted in HV-positive strains. Multilocus sequence typing analysis identified 24 different sequence types from K. pneumoniae VAP samples. Conclusions: HV-phenotype is the major virulence determinant for mechanically ventilated patients. There was a specific sequence typing (ST) distribution between HV-positive and HV-negative strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available