4.8 Article

Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis

Journal

ANALYTICAL CHEMISTRY
Volume 92, Issue 6, Pages 4647-4655

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.0c00274

Keywords

-

Funding

  1. ARC [DP170102208, DP180101715]

Ask authors/readers for more resources

The noninvasive continuous analysis of human sweat is of great significance for improved healthcare diagnostics and treatment in the future, for which a wearable potentiometry-based ion-selective electrode (ISE) has attracted increasing attention, particularly involving ion detection. Note that traditional solid-state ISE electrodes are rigid ion-to-electron transducers that are not conformal to soft human skin and cannot function under stretched states. Here, we demonstrated that vertically aligned mushroom-like gold nanowires (v-AuNW) could serve as stretchable and wearable ion-to-electron transducers for multiplexed, in situ potentiometric analysis of pH, Na+, and K+ in sweat. By modifying v-AuNW electrodes with polyaniline, Na ionophore X, and a valinomycin-based selective membrane, we could specifically detect pH, Na+, and K+, respectively, with high selectivity, reproducibility, and stability. Importantly, the electrochemical performance could be maintained even under 30% strain and during stretch-release cycles without the need of extrinsic structural design. Furthermore, our stretchable v-AuNW ISEs could be seamlessly integrated with a flexible printed circuit board, enabling wireless on-body detection of pH, Na+, and K+ with fast response and negligible cross-talk, indicating considerable promise for noninvasive wearable sweat analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available