4.7 Article

A palindromic-based strategy for colorimetric detection of HIV-1 nucleic acid: Single-component assembly of gold nanoparticle-core spherical nucleic acids

Journal

ANALYTICA CHIMICA ACTA
Volume 1102, Issue -, Pages 119-129

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2019.12.050

Keywords

Gold nanoparticle; Spherical nucleic acid; Palindromic linker; Colorimetric detection; HIV-1 nucleic acid; Phosphorothioate modification

Ask authors/readers for more resources

Gold nanoparticle-core spherical nucleic acids (AuNP core-SNAs), by virtue of the programmable nature of oligonucleotides, have yielded access to the innovative strategies for targeted biodiagnostics. Here, DNA-directed self-assembly of AuNP core-SNAs has been used to design a colorimetric method to sense HIV-1 viral nucleic acid. This strategy utilizes an oligonucleotide with sequence of 5'-untranslated region (5' UTR) of the HIV-1 RNA genome anchored on the surface of AuNPs and a complementary linker strand with a palindromic sequence tail. In the absence of HIV-1 target nucleic acid the complementary linker induces self-assembly of SNAs based on sequence symmetry in the free palindromic tail which can bridge two DNA double helices. While in the presence of the target DNA, due to linker-target duplex formation, the colloidal stability and the red color of the SNAs solution are preserved. Picomole amounts of target DNA can easily be detected with the naked eyes. A 95-mer synthetic DNA strand with the same sequence of HIV-1 viral RNA was utilized for positive control of HIV-1 RNA. The selectivity of the selected linker was satisfactory up to 90% match. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available