4.7 Article

Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance

Journal

ANALYTICA CHIMICA ACTA
Volume 1107, Issue -, Pages 55-62

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2020.02.014

Keywords

Chemical etching; Core-shell MOFs; Surface functionalization; Graphene; Electrochemical catalysis and sensing

Funding

  1. National Natural Science Foundation of China [21804031, 81672919, 81771718]

Ask authors/readers for more resources

Recently, metal-organic frameworks (MOFs) display great application potential in the field of electrochemical catalysis and sensing due to its extraordinary properties. Herein, Co-based MOFs (ZIF-67) decorated graphene nanosheets (GS) heterogeneous hybrids (ZIF-67@GS) with sandwich-like morphology is first prepared by a facile in situ synthesis method. The electrochemical activity of ZIF-67 polyhedrons is effectively enhanced for the introduction of the high conductivity of graphene nanosheets. Subsequently, phytic acid functionalized ZIF-67 with unique core-shell structure decorated GS (PA-ZIF-67@GS) is prepared through the chemical etching effect of phytic acid. Surprisingly, the exposure level of metal active sites, electrochemical active surface area, electron transfer kinetic of the chemically etched ZIF-67@GS are further significantly boosted. Benefiting from the greatly modified interface property, the as-obtained PA-ZIF-67@GS hybrids exhibit excellent electrocatalytic activity toward the oxidation of glucose, and an ultrasensitive nonenzymatic electrochemical sensing platform is then developed. It is believed that this work may provide effective guidance for optimizing the electrochemical catalytic and sensing performance of other series of MOFs. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available