4.7 Article

Exploring the interaction of G-quadruplex and porphyrin derivative by single protein nanopore sensing interface

Journal

ANALYTICA CHIMICA ACTA
Volume 1106, Issue -, Pages 126-132

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2020.01.053

Keywords

Single nanopore sensing; alpha-hemolysin; DNA; G-quadruplex; Porphyrin derivative

Funding

  1. National Science Research Foundation [21575019]

Ask authors/readers for more resources

Both human telomere and proto-oncogene c-MYC can form G-quadruplex (G4) with various conformations. Porphyrin derivative (TMPyP4) could stabilize G4, and thus is considered as a potential drug for anticancer therapeutics. In this paper, the translocation behaviors of three typical G4s (telomere basket, telomere hybrid-1 and c-MYC Pu22 parallel) and their interaction with TMPyP4 were investigated with a single protein nanopore sensing interface with the same main electrolyte of 0.5 M tetramethylammonium chloride. As observed by the statistics of the dwell time of the current pulses, in the presence of K+, the parallel G4 is more stable than the hybrid-1 G4, while the basket G4 in the presence of Na+ exhibited shortest duration. The dwell time of all of the G4s increased as the result of interaction with TMPyP4, indicating an obvious stabilizing effect. This study demonstrated that the single nanopore sensing interface not only reveal the stability of various G4 conformations at a single-molecule level, but also provide the interaction information of a ligand, which could be useful in the drug design. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available