4.7 Article

Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection

Journal

BMC GENOMICS
Volume 17, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12864-016-2394-y

Keywords

Host-virus systems biology; Protein interaction network; RNA virus; Plant virus; Potyvirus; Nuclear inclusion a protein; Affinity purification mass spectrometry; Arabidopsis thaliana

Funding

  1. Ministerio de Economia y Competitividad (Spain) [BIO2011-26741, BIO2014-54269-R, BFU2012-30805]
  2. Generalitat Valenciana [PROMETEOII/2014/021]
  3. Universidad Politecnica de Valencia

Ask authors/readers for more resources

Background: The genomes of plant viruses have limited coding capacity, and to complete their infectious cycles, viral factors must target, direct or indirectly, many host elements. However, the interaction networks between viruses and host factors are poorly understood. The genus Potyvirus is the largest group of plus-strand RNA viruses infecting plants. Potyviral nuclear inclusion a (NIa) plays many roles during infection. NIa is a polyprotein consisting of two domains, viral protein genome-linked (VPg) and protease (NIaPro), separated by an inefficiently utilized self-proteolytic site. To gain insights about the interaction between potyviral NIa and the host cell during infection, we constructed Tobacco etch virus (TEV, genus Potyvirus) infectious clones in which the VPg or the NIaPro domains of NIa were tagged with the affinity polypeptide Twin-Strep-tag and identified the host proteins targeted by the viral proteins by affinity purification followed by mass spectrometry analysis (AP-MS). Results: We identified 232 different Arabidopsis thaliana proteins forming part of complexes in which TEV NIa products were also involved. VPg and NIaPro specifically targeted 89 and 76 of these proteins, respectively, whereas 67 proteins were targeted by both domains and considered full-length NIa targets. Taking advantage of the currently known A. thaliana interactome, we constructed a protein interaction network between TEV NIa domains and 516 host proteins. The most connected elements specifically targeted by VPg were G-box regulating factor 6 and mitochondrial ATP synthase delta subunit; those specifically targeted by NIaPro were plasma membrane aquaporin PIP2;7 and actin 7, whereas those targeted by full-length NIa were heat shock protein 70-1 and photosystem protein LHCA3. Moreover, a contextualization in the global A. thaliana interactome showed that NIa targets are not more connected with other host proteins than expected by chance, but are in a position that allows them to connect with other host proteins in shorter paths. Further analysis of NIa-targeted host proteins revealed that they are mainly involved in response to stress, metabolism, photosynthesis, and localization. Many of these proteins are connected with the phytohormone ethylene. Conclusions: Potyviral NIa targets many host elements during infection, establishing a network in which information is efficiently transmitted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available