4.7 Article

3-D dam break flow simulations in simplified and complex domains

Journal

ADVANCES IN WATER RESOURCES
Volume 137, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.advwatres.2020.103510

Keywords

Floods; Dam-break flows; Numerical simulations; Flood mitigation

Funding

  1. Iowa Flood Center
  2. Oak Ridge Leadership Computing Facility (OLCF) [DD-2015-GEO117]

Ask authors/readers for more resources

This paper presents a 3-D, non-hydrostatic, Reynolds-Averaged Navier-Stokes (RANS) model using the volume of fluid (VOF) approach to simulate dam-break flows. Good agreement is observed between the 3-D model predictions and results of dam-break experiments performed in the laboratory. The 3-D model is then applied to predict flood-wave propagation induced by the sudden failure of two flood-protection dams in Iowa, USA. Results are also compared with predictions of 2-D, hydrostatic, depth-averaged models. The 2-D model simulations using the precalibrated values of the Manning's coefficients underpredict the speed of propagation of the flood wave and the area inundated by the flood compared to the 3-D model predictions. A methodology is presented to recalibrate the 2-D model which improves the agreement with the 3-D model predictions. Simulation results also show that strong 3-D effects are generated in regions of strong curvature of the river channel, near sudden constrictions and obstacles, and during the times the mean flow direction varies significantly over the flow depth. Such 3-D effects cannot be captured by the 2-D model even after recalibration, pointing toward the need to use 3-D models for detailed flood mapping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available