4.7 Article

1T/2H-MoS2 engineered by in-situ ethylene glycol intercalation for improved toluene sensing response at room temperature

Journal

ADVANCED POWDER TECHNOLOGY
Volume 31, Issue 5, Pages 1868-1878

Publisher

ELSEVIER
DOI: 10.1016/j.apt.2020.02.022

Keywords

MoS2; Intercalation; Gas sensing; Toluene; Humidity

Funding

  1. Japan Society for the Promotion of Science KAKENHI [JP16H06439]
  2. Dynamic Alliance for Open Innovations Bridging Human, Environmental and Materials the Cooperative Research Program of Network Joint Research Center for Materials and Devices
  3. Hosokawa Powder Technology Foundation

Ask authors/readers for more resources

Molybdenum sulfide (MoS2) was engineered by intercalation of ethylene glycol to form 2H (semiconductor) and 1T (metallic) phases. MoS2 was successfully synthesized under solvothermal conditions with different solvents. Water, ethylene glycol (EG), and a mixture of water and EG were used as the solvent. The obtained samples were denoted as MoS2 (W), MoS2 (EG), and MoS2 (EG:W), respectively. The use of ethylene glycol as a solvent expands the (0 0 2) lattice spacing which indicated the expansion of interlayer spacing by intercalation of EG through solvothermal reaction. The MoS2 intercalated with EG possessed higher 1T phase compared to MoS2 without any intercalation. The obtained MoS2 was applied for room temperature toluene sensing with different relative humidity (RH, 20, 40, 60, 80%). The increase of relative humidity could continuously increase the base resistance and also the sensing response of MoS2 (W) and MoS2 (EG:W). For MoS2 (EG), 60% relative humidity showed the optimum condition for sensing applications. The all MoS2 (W), MoS2 (EG), and MoS2 (EG:W) had good sensing performance at 60% RH with sensing ability (Delta R/R-air%) in 100 ppm toluene around 12.50, 14.53, 16.29%, respectively. 1T-MoS2 is taking a major contribution on the sensing properties of MoS2. (C) 2020 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available