4.7 Article

Power-draw prediction by random forest based on operating parameters for an industrial ball mill

Journal

ADVANCED POWDER TECHNOLOGY
Volume 31, Issue 3, Pages 967-972

Publisher

ELSEVIER
DOI: 10.1016/j.apt.2019.12.012

Keywords

Power-draw; Variable importance measurement; Random Forest; Mill charge

Ask authors/readers for more resources

Estimation of mill power-draw can play a critical role in economics, operation and control standpoints of the entire mineral processing plants since the cost of milling is the single biggest expense within the process. Thus, several empirical power-draw prediction models have been generated based on a combination of laboratory, pilot and full-scale measurements of different milling conditions. However, they cannot be used in industrial plants, where in full-scale operations, only not few numbers of input parameters used in those models are measured. Moreover, empirical models do not assess the relationship between input features. This investigation is going to introduce random forest (RF), as a predictive model, beside of its associated variable importance measures system, as a sensible means for variable selection, to overcome drawbacks of empirical models. Although RF as a powerful modeling tool has been used in several problem solving systems, it has not comprehensively considered in the powder technology areas. In this investigation, an industrial ball mill database from Chadormalu iron ore processing plant were used to develop a RF model and explore relationships between power-draw and other monitored operating parameters. Modeling results indicated that RF can highly improve the prediction accuracy of powerdraw as compared to the regression as a typical method (R-2: 0.98 vs. 0.60, respectively) and rank operational milling parameters based on their importance. (C) 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available