4.8 Article

Internal-Field-Enhanced Charge Separation in a Single-Domain Ferroelectric PbTiO3 Photocatalyst

Journal

ADVANCED MATERIALS
Volume 32, Issue 7, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201906513

Keywords

charge separation; ferroelectrics; nanomaterials; photocatalysis; surface photovoltage

Funding

  1. National Natural Science Foundation of China [21633015, 21773228]
  2. Chinese Academy of Sciences (CAS) Interdisciplinary Innovation Team [JCTD-2018-10]
  3. Dalian Institute of Chemical Physics (DICP) Innovation Foundation [DICPSZ201801]
  4. Strategic Priority Research Program and Equipment Development Project of the Chinese Academy of Sciences [XDB17000000, YJKYYQ20170002]

Ask authors/readers for more resources

Ferroelectric materials with spontaneous polarization-induced internal electric fields have drawn increasing attention in solar fuel production due to the intrinsic polarized structure. However, the origination of charge separation in these materials at the nano/microlevel is ambiguous owing to the complexity of the multielectric fields. Besides, the observed charge separation ability is far from theoretical expectation. Herein, by spatially resolved surface photovoltage spectroscopy, it is clearly demonstrated that the depolarization field in single-domain ferroelectric PbTiO3 (PTO) nanoplates is the main driving force for charge separation and it can effectively drive photogenerated electrons and holes to the positive and negative polarization facets, respectively. Moreover, the charge separation ability of PTO nanoplates increases with increasing particle size along the polarization direction, due to the increasing potential difference between the opposite polarization facets. Furthermore, this driving force for charge separation directly contributes to the enhancement of the photocatalytic hydrogen evolution reaction activity in ferroelectrics. Finally, it is proved that the screening field compensates part of the depolarization field and can be diminished by adding a dielectric layer on the ferroelectric surface. These findings demonstrate the importance of increasing the depolarization field and decreasing the screening field for efficient charge separation in ferroelectric semiconductor photocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available