4.8 Article

Necklace-like Nitrogen-Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 10, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201909725

Keywords

energy storage; metal-organic frameworks; supercapacitors; tetrapods; zinc-ion capacitors

Funding

  1. Institute for Basic Science [IBS-R019-D1]
  2. Carl Tryggers Stiftelse for Vetenskaplig Forskning (CTS)
  3. Swedish Research Council (VR)
  4. Federal Ministry of Education and Research (BMBF) [03XP0126B]
  5. SNIC
  6. HPC2N
  7. National Research Foundation of Korea [IBS-R019-D1-2020-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The design and synthesis of a necklace-like nitrogen-doped tubular carbon (NTC) are presented by growing microporous polyhedral ZIF-8 particles and a uniform layer of ZIF-8 on sacrificial ZnO tetrapods (ZTPs). Oxygen vacancies together with defect regions on the surface of the ZTPs result in the formation of ZIF-8 polyhedra in conjunction with a very thin shell. This necklace-like NTC structure has a high N content, very large surface area, ultrahigh microporosity, and quite high electrical conductivity. NTC-based symmetrical supercapacitor and zinc-ion capacitor (ZIC) devices are fabricated and their electrochemical performance is measured. The NTC supercapacitor shows an ultrahigh rate capability (up to 2000 mV s(-1)) and promising cycle life, retaining 91.5% of its initial performance after 50 000 galvanostatic charge-discharge cycles. An aqueous ZIC, constructed using the NTC, has a specific capacitance of 341.2 F g(-1) at a current density of 0.1 A g(-1) and an energy density of 189.6 Wh kg(-1) with a 2.0-V voltage window, respectively. The outstanding performance is attributed to the NTC high N-doping content, a continuous polyhedral 3D hollow architecture and the highly porous microtubular arms exhibiting very high surface area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available