4.8 Article

Active Reconfigurable Tristable Square-Twist Origami

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 13, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201909087

Keywords

frequency reconfigurable antennas; materials origami; multistable structures

Funding

  1. Beijing Natural Science Foundation [2182065]
  2. National Natural Science Foundation of China [11872113]
  3. Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences [LSU-KFJJ-2018-04]

Ask authors/readers for more resources

Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is demonstrated using a classic square-twist origami configuration. By manipulating both material properties and geometric parameters of the heteropolymer structures, a design principle for tailoring the multistable configuration in the square-twist origami is established based on variation of the structural potential energy. Under thermal triggering, the stiffness of the deformable structure is dramatically reduced, which causes an increase in the structural degree of freedom, allowing for self-deployment via release of the prestored energy in the elastic twisted hinges. Utilizing such unique features and design principles, a prototype of frequency reconfigurable origami antenna of five diverse operating modes and a programmable multiple-input multiple-output communication system is subsequently designed and assembled, aiming to substantially promote the channel capacity and communication reliability. The findings and results firmly provide a remarkable design principle and strategy for advancing active origami structures and devices in shape-morphing systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available