4.8 Article

4D Printing of a Bioinspired Microneedle Array with Backward-Facing Barbs for Enhanced Tissue Adhesion

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 11, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201909197

Keywords

4D printing; bioinspired microneedles; drug delivery; projection microstereolithography; tissue adhesion

Funding

  1. New Jersey Health Foundation [PC92-17]
  2. Italian Ministry of Education, University and Research (MIUR) [RBFR122KL1]
  3. Rutgers University through the School of Engineering
  4. Rutgers University through Department of Mechanical and Aerospace Engineering
  5. Italian Ministry of Education, University and Research (MIUR)

Ask authors/readers for more resources

Microneedle (MN), a miniaturized needle with a length-scale of hundreds of micrometers, has received a great deal of attention because of its minimally invasive, pain-free, and easy-to-use nature. However, a major challenge for controlled long-term drug delivery or biosensing using MN is its low tissue adhesion. Although microscopic structures with high tissue adhesion are found from living creatures in nature (e.g., microhooks of parasites, barbed stingers of honeybees, quills of porcupines), creating MNs with such complex microscopic features is still challenging with traditional fabrication methods. Here, a MN with bioinspired backward-facing curved barbs for enhanced tissue adhesion, manufactured by a digital light processing 3D printing technique, is presented. Backward-facing barbs on a MN are created by desolvation-induced deformation utilizing cross-linking density gradient in a photocurable polymer. Barb thickness and bending curvature are controlled by printing parameters and material composition. It is demonstrated that tissue adhesion of a backward-facing barbed MN is 18 times stronger than that of barbless MN. Also demonstrated is sustained drug release with barbed MNs in tissue. Improved tissue adhesion of the bioinspired MN allows for more stable and robust performance for drug delivery, biofluid collection, and biosensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available