4.8 Article

Mechanically Interlocked Hydrogel-Elastomer Hybrids for On-Skin Electronics

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 29, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201909540

Keywords

electrophysiological signals; hybrid electrodes; mechanical interlock; mechanical softness; on-skin electronics

Funding

  1. Singapore Ministry of Education [MOE2017-T2-2-107]

Ask authors/readers for more resources

Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human-machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar materials while retaining their respective properties. Herein, the mechanically interlocked hydrogel-elastomer hybrid is reported as a viable solution to this problem. Hydrogels with low moduli and high adhesiveness are employed as the substrate, while porous elastomer webs are used as matrices to load conductive films and lock the hydrogels through a mechanically interlocked structure. The bonding strength between the hydrogel and elastomer in the interlocking hybrid structure is 14.3 times of that obtained via the physical stacking method. As a proof of concept, interlocking hybrids are used as on-skin electrodes for electrophysiological signal recording including electromyography and electrocardiography. The robust hybrid electrodes are able to detect signals after multiple cycles. The proposed strategy not only is an effective approach to achieve interlocking structures, but also provides a new perspective for soft and stretchable electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available