4.8 Article

siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery

Journal

ACTA BIOMATERIALIA
Volume 103, Issue -, Pages 213-222

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.12.005

Keywords

Polymeric nanoparticles; siRNA release kinetics; RNAi efficiency; Inflammation therapy

Funding

  1. National Natural Science Foundation of China [81072595, 81573356, 81673371]

Ask authors/readers for more resources

Despite many efforts in the rational design of nanoparticles (NPs) to overcome the biological barriers to small interfering RNA (siRNA) delivery for improving gene silencing efficiency, little is known about the correlations between siRNA release kinetics and RNA interference (RNAi) efficiency and inflammation therapy via oral delivery. On the basis of mannose-modified trimethyl chitosan-cysteine (MTC) polymers, seven types of MTC NPs containing tumor necrosis factor (TNF)-alpha siRNA were prepared through ionic gelation. The siRNA release kinetics from MTC NPs were finely tuned by adjusting the kinds and amounts of the crosslinkers involved. These MTC NPs exhibited no disparities in siRNA protection against enzymatic degradation in physiological fluids and cellular uptake in macrophages; however, they showed distinct in vitro siRNA release profiles and intracellular unpacking kinetics. MTC NPs with relatively rapid and sustained siRNA release were responsible for efficient, prompt, and prolonged RNAi, contributing to desired therapeutic efficacy in acute and chronic inflammatory murine models following oral delivery. However, MTC NPs insufficiently releasing siRNA could not elicit effective RNAi. Collectively, the present investigation might provide broad insights into the optimization of siRNA nanocarriers with respect to their release kinetics for improving RNAi efficacies aiming at different types of inflammatory diseases. Statement of significance siRNA release kinetics in the cytoplasm and pathological characteristics of diseases themselves determine the therapeutic efficacy of siRNA delivery. Herein, by adjusting the kinds and amounts of the crosslinkers involved, we developed seven types of MTC NPs containing TNF-alpha siRNA with distinct siRNA release kinetics. MTC NPs with relatively rapid and sustained siRNA release were responsible for prompt and prolonged RNAi, respectively, contributing to desired therapeutic efficacy in acute and chronic inflammation following oral delivery. These results might provide broad insights into the optimization of siRNA nanocarriers in respect to their release kinetics for improving therapeutic outcomes toward different clinical requirements. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available