4.8 Article

A Hybrid VOx Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic via Cascade Reactions

Journal

ACS NANO
Volume 14, Issue 3, Pages 3017-3031

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b07886

Keywords

hexacyanoferrate; vanadium oxide; hydrogel; enzyme mimetics; cascade reactions; reactive oxygen species; dye degradation

Funding

  1. National Natural Science Foundation of China [51572253, 21771171]
  2. Scientific Research Grant of Hefei National Synchrotron Radiation Laboratory [UN2017LHJJ]
  3. Fundamental Research Funds for the Central Universities [YD2340002001]
  4. University of Science and Technology (USTC)
  5. Chinese Academy of Sciences (CAS)
  6. World Academy of Sciences (TWAS) Scholarship programs

Ask authors/readers for more resources

Inspired by the cascade reactions occurring in micro-organelles of living systems, we have developed a hybrid hydrogel, a nanozyme that mimics three key enzymes including peroxidase, superoxide dismutase, and catalase. The organic/inorganic nanostructured hydrogel constituting VOx incorporated hexacyanoferrate Berlin green analogue complex (VO(x)BG) is prepared by a simple one-step hydrothermal process, and its composition, structure, and properties are thoroughly investigated. Polyvinylpyrrolidone, a low-cost and biocompatible polymer, was utilized as a scaffold to increase the surface area and dispersion of the highly active catalytic centers of the nanozyme. Compared to the widely used horseradish peroxidase in enzyme-linked immunosorbent assay, our VO(x)BG analogue hydrogel displays an excellent affinity toward the chromogenic substrate that is used in these peroxidase-based assays. This higher affinity makes it a competent nanozyme for detection and oxidation of biomolecules, including glucose, in a cascade-like system which can be further used for hydrogel photolithography. The VO(x)BG analogue hydrogel also holds a good ability for the rapid and efficient oxidative degradation of environmentally unfriendly recalcitrant substrates under light irradiation. Detailed mechanistic studies of this multifaceted material suggest that different complex catalytic processes and routes are involved in these photo-Fenton and Fenton reactions that are responsible for the generation as well as consumption of reactive oxygen species, which are effectively activated by a multienzyme mimetic of the VO(x)BG analogue hydrogel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available