4.8 Article

Band Offsets at κ-([Al,In]xGa1-x)2O3/MgO Interfaces

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 7, Pages 8879-8885

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b21128

Keywords

kappa-Ga2O3; PLD; energy-level alignment; band offsets; X-ray photoelectron spectroscopy

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [182087777-SFB 951]
  2. European Social Fund within the Young Investigator Group Oxide Heterostructures [SAB 100310460]

Ask authors/readers for more resources

Conduction and valence band offsets are among the most crucial material parameters for semiconductor heterostructure device design, such as for high-electron mobility transistors or quantum well infrared photodetectors (QWIP). Because of its expected high spontaneous electrical polarization and the possibility of polarization doping at heterointerfaces similar to the AlGaN/InGaN/GaN system, the metastable orthorhombic kappa-phase of Ga2O3 and its indium and aluminum alloy systems are a promising alternative for such device applications. However, respective band offsets to any dielectric are unknown, as well as the evolution of the bands within the alloy systems. We report on the valence and conduction band offsets of orthorhombic kappa-(AlxGa1-x)(2)O-3 and kappa-(InxGa1-x)(2)O-3 thin films to MgO as reference dielectric by X-ray photoelectron spectroscopy. The thin films with compositions x(In) <= 0.27 and x(Al) <= 0.55 were grown by pulsed laser deposition utilizing tin-doped and radially segmented targets. The determined band alignments reveal the formation of a type I heterojunction to MgO for all compositions with conduction band offsets of at least 1.4 eV, providing excellent electron confinement. Only low valence band offsets with a maximum of similar to 300 meV were observed. Nevertheless, this renders MgO as a promising gate dielectric for metal-oxide-semiconductor transistors in the orthorhombic modification. We further found that the conduction band offsets in the alloy systems are mainly determined by the evolution of the band gaps, which can be tuned by the composition in a wide range between 4.1 and 6.2 eV, because the energy position of the valence band maximum remains almost constant over the complete composition range investigated. Therefore, tunable conduction band offsets of up to 1.1 eV within the alloy systems allow for subniveau transition energies in (AlxGa1-x)(2)O-3/(InxGa1-x)(2)O-3/(AlxGa1-x)(2)O-3 quantum wells from the infrared to the visible regime, which are promising for application in QWIPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available