4.8 Article

Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly(D,L-lactide-co-caprolactone) Conduits Promote Peripheral Nerve Regeneration

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 7, Pages 7915-7930

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b20321

Keywords

nerve guidance conduits; micropatterns; graphene oxide; cell migration; nerve regeneration

Funding

  1. Natural Science Foundation of China [21434006, 51873188]
  2. National Key Research and Development Program of China [2016YFC1100403]

Ask authors/readers for more resources

Regeneration and functional recovery of peripheral nerves remain formidable due to the inefficient physical and chemical cues in the available nerve guidance conduits (NGCs). Introducing micropatterns and bioactive substances into the inner wall of NGCs can effectively regulate the behavior of Schwann cells, the elongation of axons, and the phenotype of macrophages, thereby aiding the regeneration of injured nerve. In this study, linear micropatterns with ridges and grooves of 3/3, 5/5, 10/10, and 30/30 mu m were created on poly(D,L-lactide-co-caprolactone) (PLCL) films following with surface aminolysis and electrostatic adsorption of graphene oxide (GO) nanosheets. The GO-modified micropatterns could significantly accelerate the collective migration of Schwann cells (SCs) and migration of SCs from their spheroids in vitro. Moreover, the SCs migrated directionally along the stripes with a fastest rate on the 3/3-GO film that had the largest cell adhesion force. The neurites of N2a cells were oriented along the micropatterns, and the macrophages tended to differentiate into the M2 type on the 3/3-GO film judged by the higher expression of Arg 1 and IL-10. The systematic histological and functional assessments of the regenerated nerves at 4 and 8 weeks post-surgery in vivo confirmed that the 3/3-GO NGCs had better performance to promote the nerve regeneration, and the CMAP, NCV, wet weight of gastrocnemius muscle, positive S100 beta and NF200 area percentages, and average myelinated axon diameter were more close to those of the autograft group at 8 weeks. This type of NGCs thus has a great potential for nerve regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available