4.8 Article

Aggregation-Induced Emission Active Donor-Acceptor Fluorophore as a Dual Sensor for Volatile Acids and Aromatic Amines

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 51, Pages 48249-48260

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b17988

Keywords

aggregation-induced emission (AIE); dual sensor; photoinduced electron transfer (PET); restricted intramolecular rotation (RIR); solvatochromism; solid-state luminescence

Funding

  1. Ministry of Human Resource and Development (MHRD)

Ask authors/readers for more resources

In the present work, a novel donor (D)-acceptor (A) fluorophore based on indeno-pyrrole derivative (PYROMe) has been utilized as a dual sensor for volatile acids and aromatic amines, where sensory responses were regulated by the aggregation-induced emission (ME) property. The twisted structural framework of PYROMe, confirmed by crystal study, avoids closed cofacial encounter upon aggregation and aided with augmented rigidity via different noncovalent interactions that ultimately ensued restricted intramolecular rotation (RIR). Consequently, PYROMe exhibited ME in THE/H2O mixture along with bright solid-state emission. The accessibility of protonation at carbonyl site and feasible HOMO energy to accept electrons from aromatic amines during photoexcitation enabled PYROMe as a potential dual sensor. A thin film of PYROMe was utilized for the quantitative detection of volatile acids and aromatic amines, and the detection limit (DL) was found to be as low as 0.77 ppm and 6.04 ppb for trifluoroacetic acid (TFA) and aniline vapors, respectively. Beyond the established scopes of substituted indeno-pyrroles, the present study paves the way, for the first time, toward an ME-driven dual-stimuli response in indeno-pyrrole based D-A fluorophores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available