4.8 Article

Photoactivated Selective Release of Droplets from Microwell Arrays

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 3, Pages 3936-3944

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b17575

Keywords

selective release; droplets; photoactivated; photoresponsive; photoacoustic; IR-780

Funding

  1. NIH [5RM1 HG010023, R21 -A1124057]

Ask authors/readers for more resources

Droplet microfluidics has enabled a significant reduction in reaction volume and analysis time, which in turn has led to transformative advances in high-capacity screening and assays. By arranging droplets into a static array, it is possible to monitor dynamic events that occur within these microchambers over an extended period of time, facilitating the identification of rare events and cell types. In many instances, it is highly desirable to recover a small number of droplets that contain unique analytes or cells for further analyses; however, few techniques allow for selective recovery of droplets from such an array without using a complex network of physical valves, which also require a large number of control units external to the microfluidic device. In this report, we present photoactivated selective release of droplets from a static microwell array enabled by a photoresponsive polymer layer integrated into the microfluidic device. This photoresponsive layer is placed in between a microwell array that traps a large number of droplets and a PDMS slab with or without a top flow channel that can be used for recovery. By using focused light, the photoresponsive layer can either be punctured for release-up recovery or induced to create a bubble by local heating to selectively push-down release droplets. We show that the photoresponsive layer is optically transparent within the visible spectrum and thus does not interfere with optical observation of droplets. The type of photoacoustic dye and the physical properties of the photoresponsive layer can be engineered to induce either puncture of the photoresponsive layer or pushing of droplets out of the microwell arrays with low thermal impact on the droplets. We believe that the photoresponsive layer will have a broad impact in the field of soft lithography-based microfluidic devices for various applications including photoresponsive valves as well as high-throughput single-cell sequencing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available