4.8 Article

Inducing the Formation of In Situ Li3N-Rich SEI via Nanocomposite Plating of Mg3N2 with Lithium Enables High-Performance 3D Lithium-Metal Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 1, Pages 627-636

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b16156

Keywords

composite plating; lithium metal anode; lithium dendrite; SEI layer; 3D current collector

Funding

  1. National Natural Science Foundation of China [51874361]

Ask authors/readers for more resources

Lithium metals fit the growing demand of high-energy density rechargeable batteries because of their high specific capacity and low redox potential. However, the lithium-metal anodes are abandoned because of various defects. In this study, we apply composite plating into the protection of lithium-metal anodes. We confirmed that the Mg3N2 nanoparticle dispersed in the ether electrolyte can be easily composite-plated with lithium, resulting in a flat, dense, and dendrite-free lithium deposition layer during the electrodeposition process. In addition, the Mg3N2 plated in the lithium metal phase would react with lithium and then generate a Li3N-rich solid electrolyte interphase (SEI) layer, mitigating continuous side reactions of the electrolyte on the Li metal. In addition, another product of the reaction is Mg which can work as lithiophilic sites in electrodeposition. The combined effect of the two fields can effectively improve the performance of lithium metal anodes. The Li3N-rich SEI layer would grow well on the surface of the three-dimensional (3D) lithium anode by composite plating. Furthermore, composite plating with the Mg3N2-containing electrolyte is a viable route that can be used for various 3D current collectors easily with a small volume effect. Here, we show that the composite plating 3D lithium metal anode is successfully applied in the Li-S battery with a long lifetime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available