4.6 Article

Exploring Deep Learning for View-Based 3D Model Retrieval

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3377876

Keywords

3D model retrieval; benchmark; deep learning features; handcrafted feature

Funding

  1. National Natural Science Foundation of China [61872270, 61572357]
  2. National Key R&D Program of China [2019YFBB1404700]
  3. Jinan's innovation team [2018GXRC014]

Ask authors/readers for more resources

In recent years, view-based 3D model retrieval has become one of the research focuses in the field of computer vision and machine learning. In fact, the 3D model retrieval algorithm consists of feature extraction and similarity measurement, and the robust features play a decisive role in the similarity measurement. Although deep learning has achieved comprehensive success in the field of computer vision, deep learning features are used for 3D model retrieval only in a small number of works. To the best of our knowledge, there is no benchmark to evaluate these deep learning features. To tackle this problem, in this work we systematically evaluate the performance of deep learning features in view-based 3D model retrieval on four popular datasets (ETH, NTU60, PSB, and MVRED) by different kinds of similarity measure methods. In detail, the performance of hand-crafted features and deep learning features are compared, and then the robustness of deep learning features is assessed. Finally, the difference between single-view deep learning features and multi-view deep learning features is also evaluated. By quantitatively analyzing the performances on different datasets, it is clear that these deep learning features can consistently outperform all of the hand-crafted features, and they are also more robust than the hand-crafted features when different degrees of noise are added into the image. The exploration of latent relationships among different views in multi-view deep learning network architectures shows that the performance of multi-view deep learning outperforms that of single-view deep learning features with low computational complexity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available