4.6 Article

New Fast kVp Switching Dual-Energy CT: Reduced Severity of Beam Hardening Artifacts and Improved Image Quality in Reduced-Iodine Virtual Monochromatic Imaging

Journal

ACADEMIC RADIOLOGY
Volume 27, Issue 11, Pages 1586-1593

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.acra.2019.11.015

Keywords

Dual-energy CT; Beam hardening artifact; Image quality

Ask authors/readers for more resources

Rationale and Objectives: To compare degradation of the image quality due to beam hardening artifacts in reduced-iodine-dose virtual monochromatic imaging (VMI) between a new fast kVp switching dual-energy computed tomography (CT) scanner (Revolution CT) and the conventional dual-energy scanner (Discovery CT). Materials and Methods: First, a phantom study was performed to quantitatively evaluate beam hardening artifacts in images obtained by VMI reconstruction at different energy levels. In the second study, we performed a retrospective evaluation of the images of 28 patients who had undergone reduced-iodine (300 mg/kg) dual-energy scanning in both Revolution CT and Discovery CT. We evaluated each image quantitatively by measuring the contrast-to-noise ratio (CNR) and qualitatively by scoring the artifacts and image quality. We also calculated the modulation transfer function (MTF) and noise power spectrum (NPS) of the two scanners. Results: In the phantom study, VMI reconstruction of the CT images at 40-70 keV was associated with a significantly greater reduction in the severity of the artifacts in the Revolution CT images as compared to the Discovery CT images. In the retrospective study, there were no significant differences in the CT value of the aorta, noise, or CNR between the two scanners, but the scores for image quality were significantly higher in the Revolution CT images as compared to the Discovery CT images. The MTF of Revolution CT was higher than that of Discovery CT, reflecting the better spatial resolution. Conclusion: In Revolution CT, beam hardening artifacts were reduced in reduced-iodine VMI at lower energy levels compared to Discovery CT, contributing to better image quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available