4.7 Article

Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel-diesel-propanol blends

Journal

SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS
Volume 35, Issue -, Pages 321-334

Publisher

ELSEVIER
DOI: 10.1016/j.seta.2019.08.007

Keywords

Waste cooking oil; Biodiesel-propanol-diesel blends; FT-IR; NMR; Engine and emissions analyses

Ask authors/readers for more resources

Application of biodiesel synthesized from waste-based raw materials with numerous solvents (higher chain alcohols) in diesel engines is a topic of great interest. This article examines the effect of biodiesel-diesel-propanol ternary blends. Physio-chemical properties, fatty acids composition (FAC), FT-IR, TGA, DSC, NMR along with some selected engine and emissions performance parameters were examined. Biodiesel was produced from waste cooking oil and exhibits excellent FAC that yields kinematic viscosity, cetane number, oxidation stability, higher heating value and iodine value of 3.93mm(2)/s, 58.88, 7.43 h, 39.45 MJ/kg and 64.92 g/100 g. Propanol blended biodiesel depicted an affirmative improvement in cold flow properties and decremented density. FT-IR and NMR results confirms the existence of biodiesel-diesel-propanol and prove their qualities as reliable methods. DSC and TGA results confirm that propanol reduces the onset and crystallization temperatures of the blends. Engine and emissions performance revealed that propanol addition further increased brake specific energy consumption (BSEC) and brake specific fuel consumption (BSFC) and reduced carbon monoxide (CO), exhaust gas temperature (EGT), nitrogen oxides (NOx) and smoke. This study proves the feasibility of the ternary blends with rewarding benefits in cold flow properties and densities besides acceptable engine and emissions performance results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available