4.7 Article

Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Pseudomonas Strains by Directing Monomers to Off-Pathway Oligomers

Journal

BIOMOLECULES
Volume 9, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/biom9110659

Keywords

bacterial amyloid; FapC protein; extracellular matrix; aggregation inhibitor; peptide array

Funding

  1. Independent Research Foundation Denmark \ Natural Sciences [8021-00208B]
  2. Independent Research Foundation Denmark \ Technology and Production [6111-00241B]
  3. Biotechnology group of Chemical Engineering Department of Tarbiat Modares University [IG-30702]

Ask authors/readers for more resources

Self-assembly of proteins to beta-sheet rich amyloid fibrils is commonly observed in various neurodegenerative diseases. However, amyloid also occurs in the extracellular matrix of bacterial biofilm, which protects bacteria from environmental stress and antibiotics. Many Pseudomonas strains produce functional amyloid where the main component is the highly fibrillation-prone protein FapC. FapC fibrillation may be inhibited by small molecules such as plant polyphenols, which are already known to inhibit formation of pathogenic amyloid, but the mechanism and biological impact of inhibition is unclear. Here, we elucidate how polyphenols modify the self-assembly of functional amyloid, with particular focus on epigallocatechin gallate (EGCG), penta-O-galloyl-beta-D-glucose (PGG), baicalein, oleuropein, and procyanidin B2. We find EGCG and PGG to be the best inhibitors. These compounds inhibit amyloid formation by redirecting the aggregation of FapC monomers into oligomeric species, which according to small-angle X-ray scattering (SAXS) measurements organize into core-shell complexes of short axis diameters 25-26 nm consisting of similar to 7 monomers. Using peptide arrays, we identify EGCG-binding sites in FapC's linker regions, C and N-terminal parts, and high amyloidogenic sequences located in the R2 and R3 repeats. We correlate our biophysical observations to biological impact by demonstrating that the extent of amyloid inhibition by the different inhibitors correlated with their ability to reduce biofilm, highlighting the potential of anti-amyloid polyphenols as therapeutic agents against biofilm infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available