4.8 Article

Bioinspired dual-morphing stretchable origami

Journal

SCIENCE ROBOTICS
Volume 4, Issue 36, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scirobotics.aay3493

Keywords

-

Categories

Funding

  1. National Research Foundation of Korea (NRF) [NRF-2016R1A5A1938472]
  2. Technology Innovation Program - Ministry of Trade, Industry and Energy (MOTIE, Korea) [10051287]
  3. KIST Institutional Program [2V07080-19-P073]
  4. Korea Evaluation Institute of Industrial Technology (KEIT) [10051287] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Nature demonstrates adaptive and extreme shape morphing via unique patterns of movement. Many of them have been explained by monolithic shape-changing mechanisms, such as chemical swelling, skin stretching, origami/kirigami morphing, or geometric eversion, that were successfully mimicked in artificial analogs. However, there still remains an unexplored regime of natural morphing that cannot be reproduced in artificial systems by a single-mode morphing mechanism. One example is the dual-mode morphing of Eurypharynx pelecanoides (commonly known as the pelican eel), which first unfolds and then inflates its mouth to maximize the probability of engulfing the prey. Here, we introduce pelican eel-inspired dual-morphing architectures that embody quasi-sequential behaviors of origami unfolding and skin stretching in response to fluid pressure. In the proposed system, fluid paths were enclosed and guided by a set of entirely stretchable origami units that imitate the morphing principle of the pelican eel's stretchable and foldable frames. This geometric and elastomeric design of fluid networks, in which fluid pressure acts in the direction that the whole body deploys first, resulted in a quasi-sequential dual-morphing response. To verify the effectiveness of our design rule, we built an artificial creature mimicking a pelican eel and reproduced biomimetic dual-morphing behavior. By compositing the basic dual-morphing unit cells into conventional origami frames, we demonstrated architectures of soft machines that exhibit deployment-combined adaptive gripping, crawling, and large range of underwater motion. This design principle may provide guidance for designing bioinspired, adaptive, and extreme shape-morphing systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available