4.7 Article

Influence of Foliar Kaolin Application and Irrigation on Photosynthetic Activity of Grape Berries

Journal

AGRONOMY-BASEL
Volume 9, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy9110685

Keywords

light micro-climates; mitigation strategies; kaolin; irrigation; Vitis vinifera L.; grape berry tissues; pulse amplitude modulated (PAM) fluorometry; photosynthesis; photosynthetic pigments

Funding

  1. FCT-Portuguese Foundation for Science and Technology [PD/BD/128275/2017, PD/00122/2012]
  2. Fundação para a Ciência e a Tecnologia [PD/BD/128275/2017] Funding Source: FCT

Ask authors/readers for more resources

Climate changes may cause severe impacts both on grapevine and berry development. Foliar application of kaolin has been suggested as a mitigation strategy to cope with stress caused by excessive heat/radiation absorbed by leaves and grape berry clusters. However, its effect on the light micro-environment inside the canopy and clusters, as well as on the acclimation status and physiological responses of the grape berries, is unclear. The main objective of this work was to evaluate the effect of foliar kaolin application on the photosynthetic activity of the exocarp and seeds, which are the main photosynthetically active berry tissues. For this purpose, berries from high light (HL) and low light (LL) microclimates in the canopy, from kaolin-treated and non-treated, irrigated and non-irrigated plants, were collected at three developmental stages. Photochemical and non-photochemical efficiencies of both tissues were obtained by a pulse amplitude modulated chlorophyll fluorescence imaging analysis. The maximum quantum efficiency (F-v/F-m) data for green HL-grown berries suggest that kaolin application can protect the berry exocarp from light stress. At the mature stage, exocarps of LL grapes from irrigated plants treated with kaolin presented higher F-v/F-m and relative electron transport rates (rETR(200)) than those without kaolin. However, for the seeds, a negative interaction between kaolin and irrigation were observed especially in HL grapes. These results highlight the impact of foliar kaolin application on the photosynthetic performance of grape berries growing under different light microclimates and irrigation regimes, throughout the season. This provides insights for a more case-oriented application of this mitigation strategy on grapevines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available