4.7 Review

Genetic Selection for Thermotolerance in Ruminants

Journal

ANIMALS
Volume 9, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/ani9110948

Keywords

adaptation; climate change; food security; genetic markers; heat stress

Funding

  1. Department of Foreign Affairs and Trade (DFAT)
  2. Government of Australia under the Australia Awards Africa Postdoctoral Fellowship Programme

Ask authors/readers for more resources

Simple Summary: Ruminants make important contributions to agricultural production, protein food security, livelihoods, and socio-cultural values, particularly in the developing world. Changing climate has dire consequences on animal agriculture and presents a real challenge for humankind. Increasing temperatures, solar radiation, humidity, and resultant heat waves, low rainfall, and drought compromise the availability of forage and water. These environmental factors adversely affect animal growth and reproduction and increase disease incidence as well as threaten biodiversity. The mitigation of such effects has been confined to location or breeds and is often expensive and not always sustainable in view of continuous variations in the climatic data. In this review we have proposed that genetic selection and breeding of thermotolerant ruminants provide a sustainable means of minimizing the effect of climate change on their production. Given the variation in the ability of ruminants to tolerate heat stress and the availability of genomic tools to pursue this agenda, heat stress can be minimised. This is a shared responsibility, requiring action by stakeholders across all sectors of society. Abstract: Variations in climatic variables (temperature, humidity and solar radiation) negatively impact livestock growth, reproduction, and production. Heat stress, for instance, is a source of huge financial loss to livestock production globally. There have been significant advances in physical modifications of animal environment and nutritional interventions as tools of heat stress mitigation. Unfortunately, these are short-term solutions and may be unsustainable, costly, and not applicable to all production systems. Accordingly, there is a need for innovative, practical, and sustainable approaches to overcome the challenges posed by global warming and climate change-induced heat stress. This review highlights attempts to genetically select and breed ruminants for thermotolerance and thereby sustain production in the face of changing climates. One effective way is to incorporate sustainable heat abatement strategies in ruminant production. Improved knowledge of the physiology of ruminant acclimation to harsh environments, the opportunities and tools available for selecting and breeding thermotolerant ruminants, and the matching of animals to appropriate environments should help to minimise the effect of heat stress on sustainable animal genetic resource growth, production, and reproduction to ensure protein food security.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available