4.6 Article

Reductions of Circulating Nitric Oxide are Followed by Hypertension during Pregnancy and Increased Activity of Matrix Metalloproteinases-2 and-9 in Rats

Journal

CELLS
Volume 8, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/cells8111402

Keywords

hypertensive pregnancy; metalloproteinases; nitric oxide; rats

Categories

Funding

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Brazil) [2016/18.782-3]

Ask authors/readers for more resources

Hypertensive pregnancy has been associated with reduced nitric oxide (NO), bioavailability, and increased activity of matrix metalloproteinases (MMPs). However, it is unclear if MMPs activation is regulated by NO during pregnancy. To this end, we examined activity of MMP-2 and MMP-9 in plasma, placenta, uterus and aorta, NO bioavailability, oxidative stress, systolic blood pressure (SBP), and fetal-placental development at the early, middle, and late pregnancy stages in normotensive and N omega-Nitro-L-arginine methyl-ester (L-NAME)-induced hypertensive pregnancy in rats. Reduced MMP-2 activity in uterus, placenta, and aorta and reduced MMP-9 activity in plasma and placenta with concomitant increased NO levels were found in normotensive pregnant rats. By contrast, increased MMP-2 activity in uterus, placenta, and aorta, and increased MMP-9 activity in plasma and placenta with concomitant reduced NO levels were observed in hypertensive pregnant rats. Also, elevated oxidative stress was displayed by hypertensive pregnant rats at the middle and late stages. These findings in the L-NAME-treated pregnant rats were also followed by increases in SBP and associated with fetal growth restrictions at the middle and late pregnancy stages. We concluded that NO bioavailability may regulate MMPs activation during normal and hypertensive pregnancy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available