4.6 Article

Mutational Landscape of the BAP1 Locus Reveals an Intrinsic Control to Regulate the miRNA Network and the Binding of Protein Complexes in Uveal Melanoma

Journal

CANCERS
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/cancers11101600

Keywords

BAP1; uveal melanoma; UCH domain; miRNAs; TCGA; HCF-1; FOXK2; ASXL1; BARD1; BRCA1; evolutionary action score

Categories

Funding

  1. German Research Foundation (DFG) [HE 5775/5-1]

Ask authors/readers for more resources

The BAP1 (BRCA1-associated protein 1) gene is associated with a variety of human cancers. With its gene product being a nuclear ubiquitin carboxy-terminal hydrolase with deubiquitinase activity, BAP1 acts as a tumor suppressor gene with potential pleiotropic effects in multiple tumor types. Herein, we focused specifically on uveal melanoma (UM) in which BAP1 mutations are associated with a metastasizing phenotype and decreased survival rates. We identified the ubiquitin carboxyl hydrolase (UCH) domain as a major hotspot region for the pathogenic mutations with a high evolutionary action (EA) score. This also includes the mutations at conserved catalytic sites and the ones overlapping with the phosphorylation residues. Computational protein interaction studies revealed that distant BAP1-associated protein complexes (FOXK2, ASXL1, BARD1, BRCA1) could be directly impacted by this mutation paradigm. We also described the conformational transition related to BAP1-BRCA-BARD1 complex, which may pose critical implications for mutations, especially at the docking interfaces of these three proteins. The mutations affect - independent of being somatic or germline - the binding affinity of miRNAs embedded within the BAP1 locus, thereby altering the unique regulatory network. Apart from UM, BAP1 gene expression and survival associations were found to be predictive for the prognosis in several (n = 29) other cancer types. Herein, we suggest that although BAP1 is conceptually a driver gene in UM, it might contribute through its interaction partners and its regulatory miRNA network to various aspects of cancer. Taken together, these findings will pave the way to evaluate BAP1 in a variety of other human cancers with a shared mutational spectrum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available