4.8 Article

Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes

Journal

SCIENCE ADVANCES
Volume 5, Issue 10, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aax4279

Keywords

-

Funding

  1. National Science Foundation of China [NSFC-21627805, 21673004, 21821004]
  2. MOST [2017YFA0204702]

Ask authors/readers for more resources

Rechargeable aqueous zinc-ion batteries are promising candidates for large-scale energy storage but are plagued by the lack of cathode materials with both excellent rate capability and adequate cycle life span. We overcome this barrier by designing a novel hierarchically porous structure of Zn-vanadium oxide material. This Zn0.3V2O5 center dot 1.5H(2)O cathode delivers a high specific capacity of 426 mA.h g(-1) at 0.2 A g(-1) and exhibits an unprecedented superlong-term cyclic stability with a capacity retention of 96% over 20,000 cycles at 10 A g(-1). Its electrochemical mechanism is elucidated. The lattice contraction induced by zinc intercalation and the expansion caused by hydronium intercalation cancel each other and allow the lattice to remain constant during charge/discharge, favoring cyclic stability. The hierarchically porous structure provides abundant contact with electrolyte, shortens ion diffusion path, and provides cushion for relieving strain generated during electrochemical processes, facilitating both fast kinetics and long-term stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available