4.2 Article

Fabrication of low-cost composite polymer-based micro needle patch for transdermal drug delivery

Journal

APPLIED NANOSCIENCE
Volume 10, Issue 2, Pages 371-377

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13204-019-01190-3

Keywords

Chitosan; Crosslinking; Microneedle array; Mechanical strength; Sustained drug release

Funding

  1. Vision Group of Science and Technology (VGST) from Govt. of Karnataka, India [VGST/SMYSR (2014-15)/GRD-448/2015-16]
  2. Manipal University (MIT/AD-R&C/Post Doc/2012)

Ask authors/readers for more resources

Microneedle delivery patches are an emerging technology to attain painless and sustained delivery through the epidermis of the skin. This study is unique in its attempt to develop polymeric microneedles embedded with drug. Special polymer chitosan with hydrogel forming capability is cross-linked with PVA, a water-soluble polymer with excellent film strengthening ability and loaded with model drug diclofenac sodium. The microneedle patch was fabricated by pouring the chitosan-PVA solution (ratio 1:6) on negative replica of master mold, which upon drying was peeled off to result in the composite film. The film of chitosan-PVA in the ratio 1:6 when tested for mechanical behavior exhibited improved mechanical strength owing to use of PVA, the presence of effective cross-linking of PVA with chitosan was further verified with FTIR. The release from drug-loaded needles was promising, as cross-linking with PVA enabled a sustained drug release of 20.17% at the end of 30 h. The release followed the Higuchi model with Fickian diffusion, indicating a swelling-dependent release. The microneedle prepared using a composite of chitosan-PVA showed promising results indicating its potential to be used as a drug eluting transdermal patch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available