4.7 Article

Genetically-encoded sensors to detect fatty acid production and trafficking

Journal

MOLECULAR METABOLISM
Volume 29, Issue -, Pages 55-64

Publisher

ELSEVIER
DOI: 10.1016/j.molmet.2019.08.012

Keywords

Lipolysis; Brown adipocyte; Lipid droplet; Luminescent sensor; Fluorescent sensor; Fatty acid

Funding

  1. NIH [K99-DK114471, DK76629, DK105963, R21DK091741]

Ask authors/readers for more resources

Objective: Fatty acids are important for biological function; however, in excess, they can cause metabolic dysregulation. Methods to image and detect fatty acids in real time are lacking. Therefore, the current study examined the dynamics of fatty acid trafficking and signaling utilizing novel fluorescent and luminescent approaches. Methods: We generated fluorescent and luminescent-based genetically-encoded sensors based upon the ligand-dependent interaction between PPAR alpha and SRC-1 to image and detect cellular dynamics of fatty acid trafficking. Results: The use of a fluorescent sensor demonstrates that fatty acids traffic rapidly from lipid droplets to the nucleus. Both major lipases ATGL and HSL contribute to fatty acid signaling from lipid droplet to nucleus, however, their dynamics differ. Furthermore, direct activation of lipolysis, independent of receptor-mediated signaling is sufficient to promote lipid droplet to nuclear trafficking of fatty acids. A luminescent-based sensor that reports intracellular fatty acid levels is amenable to high-throughput analysis. Conclusions: Fatty acids traffic from lipid droplets to the nucleus within minutes of stimulated lipolysis. Genetically-encoded fluorescent and luminescent based sensors can be used to probe the dynamics of fatty acid trafficking and signaling. (C) 2019 The Authors. Published by Elsevier GmbH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available