4.5 Article

The synthesis of carbon-based nanomaterials by pulsed laser ablation in water

Journal

MATERIALS RESEARCH EXPRESS
Volume 7, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2053-1591/ab572b

Keywords

carbon-based nanomaterials; pulsed laser ablation; graphene; reduced graphene oxide

Funding

  1. Physics Department, Faculty of Science at King Abdulaziz University, Jeddah, Saudi Arabia

Ask authors/readers for more resources

Pulsed Laser Ablation in liquid (PLAL) is considered as a robust and simple technique for producing nanoparticles (NPs) using lasers. The carbon-based nanoparticles were fabricated via the PLAL approach by irradiating a graphite target with a pulsed Nd:YAG laser of wavelength 532 nm. The graphite target was immersed in distilled water and irradiated for 10 min. The pulse length, reputation rate, and fluence were 6 ns, 10 Hz, and 0.4 J cm(?2), respectively. The structural and physical properties of the synthesized NPs were investigated and analyzed using different characterization methods. For example, Transmission Electron Microscopy (TEM) images revealed diverse carbon nanostructures such as graphene nanosheets, nanospheres, nanospheres in the shape of a necklace, and nanotubes. The spectrum of Energy Dispersive X-Ray spectroscopy (EDX) confirmed successful synthesis of high purity carbon nanostructures. Moreover, the result of X-Ray Diffraction (XRD) Spectroscopy indicated the presence of reduced Graphene Oxide (rGO) with a (002) plane and the absence of Graphene Oxide (GO). The transmission spectrum from Ultraviolet-Visible (UV?vis) analysis showed a strong trough at 266 nm which is attributed to the presence of carbon nanostructures. Furthermore, Fourier-Transform Infrared Spectroscopy (FTIR) analysis demonstrated the vibration bonds related to carbon. The nanostructures produced were semi-stable with little agglomeration as was inferred from the results of the Zeta Potential. Finally, the Dynamic Light Scattering (DLS) analysis supported the TEM results. PLAL technique is proved to be a simple method for producing carbon-based nanomaterials. Moreover, the laser fluence was found to be an important factor which affects greatly the type of nanostructures that could be synthesized during laser ablation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available